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LETTER TO THE EDITOR
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Abstract. Starting from the observation that the filler particles in filled rubbers form fractal
clusters which are connected to each other, a theoretical model is developed which establishes
a connection between the amplitude dependence of the elastic deformation of filled rubbers and
the structural properties of the filler. It is assumed that the elastic modulus is dominated by the
rigid filler network at very low strain, whereas at higher strain the rubber matrix provides the
main contribution because of cluster break-up. Within this model the exponent arising in an
empirical description of the amplitude dependence is derived from the connectivity of the filler
clusters.

Filled rubbers are used in a wide range of applications, the most important being
the production of automotive tyres, where the performance characteristics are strongly
affected by the filler properties. The basic achievement of filling relatively soft networks,
i.e. crosslinked polymer chains, is to reach a significant reinforcement of the mechanical
properties. It has been shown that the modulus of a filled rubber network is indeed
significantly higher, when compared to the ‘bare’ modulus of the unfilled network. The
latter is of the order ofNkBT , whereN is the number of chains andkBT the thermal
energy [1].

Moreover, fillers like carbon black (cb) or silica are active fillers, i.e. the elastic
properties of the rubber are modified more than by means of a mere addition of hard
randomly dispersed particles to a soft polymer matrix. Such a random dispersion would
lead only to a hydrodynamic reinforcement [2]. The additional reinforcement is essentially
caused by the complex structure of the active fillers (see, e.g., [3] and references therein).
For example, carbon black consists of spherical particles with a rough and energetically
disordered surface [4, 5], forming rigid aggregates in the 100 nm range with a fractal
structure. Agglomeration of the aggregates on a larger scale forms filler clusters and even
a filler network at high enough cb concentrations, which leads to additional processes [6].
Thus at filling fractions larger than a certain threshold the clusters form an irregular network
that is fractal on some scales. The main point is that the filler network has the property that
it is not stable, but breaks up into smaller units with increasing mechanical strain.

It is now widely accepted [4] that the filler networking is responsible for the
typical nonlinear viscoelastic behaviour of filled rubbers, i.e. the characteristic amplitude
dependence of the elastic moduli with periodical strainε(t) = a sin(ωt) with amplitude
a. For constant temperature and frequency the stress is given byσ(t) = G∗(a) ε(t) where
G∗ = G′ + iG′′ is the complex elastic modulus, andG′ is called the storage modulus, and
G′′ the loss modulus.
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Experimentally, with increasing strain amplitude a decrease of the storage modulus
G′ from G′

0 to a plateau valueG′
∞ is found. This peculiar behaviour is known as the

Payne effect and is present in most filled rubber systems. Payne [7] interpreted the decline
of the storage modulus as a result of a dynamical break-up of the filler network described
above: (van der Waals) bonds between cb aggregates are continuously broken and reformed,
so at low deformations the energetic elastic contribution of the rigid filler network is
dominant, whereas at high deformations the filler has only a small remaining effect, which
is hydrodynamic and caused by the rubber–cb interaction [8]. In spite of the fundamental
significance for the reinforcing of filled rubbers, a full knowledge of the influence which
the structure of the filler network has on the mechanical properties is still lacking.

Kraus [9] developed a phenomenological model which quantifies the Payne effect and
has often been successfully applied for the fitting of experimental data. The model is based
on the assumption that the filler network breaks and recombines with various rates, which
depend on amplitude (deformation) and on some rate constants. The result says that the
decline of the storage modulusG′ with growing strain amplitude has the characteristic
functional form

G′ − G′
∞

G′
0 − G′∞

= 1

1 + (a/ac)2m
(1)

whereac is a constant. It was shown by [9, 10, 11] that the form exponentm ≈ 0.6 is
universal, i.e. it is to a large extent independent of temperature, frequency, cb content and
the type of carbon black and rubber mixture used. Unfortunately within the Kraus model the
exponentm is a purely empirical (input) parameter, the reasons for the universality remaining
unclear. Moreover the constantac is determined by quantities—such as rate constants for
the breaking and recombination process—which cannot be measured by experiments. It has
to be realized thatac and m are fitting parameters without obvious physical relevance to
the structural properties of the cluster network.

In the following it is shown that the phenomenological result from equation (1) can
indeed be derived from a physical model, that uses a realistic model for the cluster network.
The present new model is based essentially on the assumption that the clusters forming the
filler network have a self-similar, i.e. fractal structure, which can be described by correlations
similar to those that appear in the percolation model. This is not totally correct, inasmuch as
the cluster growth for cb concentrations above the gel point of the filler network is governed
rather by a kinetic cluster than by the cluster aggregation process [6]. Therefore the model
presented here is restricted to filler concentrations near the gel point, which is the case in
most systems under application. At lower concentrations a crossover to the pure rubber
behaviour is expected. This will be discussed in more detail in a longer publication.

Presuming that a cluster consists of aggregates of sizeb, the relation between the number
N of ‘elastic active’ aggregates in a cluster and the sizeξ of the clusters is given by

N ∼= (ξ/b)C (2)

with a connectivity exponentC. Here ‘elastically active’ means that in such irregular
structures many structural elements (e.g. dangling and nonconnected parts) do not take part
in the transmission of stress. In an ideal percolation cluster this exponent is to be identified
with the fractal dimension of the elastic backbone,C ≈ 1.7 [12].

In order to achieve a correct picture of a filled system, we first have to set up a
relationship between stress and elongation of the filler clusters for uniaxial deformation.
For this purpose we adopt the ideas proposed by Wittenet al [13]. These authors derived a
similar scaling behaviour for the elastic properties in the limit of large extensions, which we
employ here with several modifications. In particular we assume that the filler clusters are
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not stretched with growing strain but rather are broken up almost immediately into smaller
and smaller units, the stress being supported by the rubber matrix.

The strong dependence of cluster size on the deformation leads to the assumption thatξ is
inversely proportional to the external force. This is similar to the well known assumption in
the original blob model of Pincus in polymer physics (see, e.g., [14]), when the deformation
behaviour of excluded-volume chains is computed. The restriction there to large extensions
does not apply here because of the different nature of the connectivity.

Figure 1. The Zener model with a nonlinear and a linear spring.

Following the lines of the work of Wittenet al the total sizeR is the number of clusters
n = N0/N (whereN0 is the total number of filler aggregates) times the cluster sizeξ . Thus
the elongation factorλ is given by

λ ∼= R

ξ0
=

(
ξ0

ξ

)C−1

(3)

where ξ0
∼= bN

1/C

0 is the maximal cluster extension. The expression for the stress is
σ ∼= (T /ξ0)λ

1/(C−1), leading to the following nonlinear relation for the elastic modulus of
the filler:

G(a) ∝ T

ξ0
a−(C−2)/(C−1) (4)

where the amplitudea is proportional to the deformation. This has to be linked with the
rubber matrix at dynamic deformation. In a first idealizedansatzwe do this by using an
elementary viscoelastic model, the so-called Zener model. As shown in figure 1 this is a
Maxwell element with a nonlinear spring (representing the filler clusters) and viscosityη,
combined in parallel with a further spring with spring constantE. In fact, this model is
under current discussion [15] in different respects, and represents one of the most elementary
models in the method of finite elements.

For periodic deformation the elastic moduli of the total system are easily calculated
[16]. The result for the storage excess modulus is

G′(a) − E

G′
0 − E

= 1

1 + (K/ωη)2a−2(C−2)/(C−1)
(5)

whereG′
0 is the storage modulus fora → 0 andK is a constant containing the system

parameters like temperature and material properties. Remarkably, this result can be
compared to the result from the phenomenological model given by Kraus (equation (1))
and the parametersac andm can be identified. There two main points need some attention:
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(i) The constantac (hereac = ωη/K) contains specific details of the model and thus
all properties and constants from the Zener model are collected. Thus the critical amplitude
ac has no universal features.

(ii) The exponentm, however, is entirely determined by the structure of the filler
network. We expect the exponent therefore to give universal features of the cluster network.

If the storage excess modulus (5) derived from the present model is compared to that
for the Kraus model (1), it is found thatm = −(C − 2)/(C − 1). From the valuem ≈ 0.6
determined by fits to experimental data, a connectivity exponentCexp ≈ 1.625 is calculated.
Hence the fractal dimension of the elastic backbone assumed above to beC ≈ 1.7 is slightly
too high. This value, however, corresponds to the ‘ideal’ percolation model. As mentioned
above this is not the case in practice, as the aggregation process for filler clusters may fall
in a different universality class of growth processes.

Of course the Zener model used in the derivation makes little claim to explain the
influence of the rubber matrix in a proper way. This is why the parametersη and ω

occurring in the model cannot be mapped onto experimentally obtained quantities the way
the exponentC can. The next step is the inclusion of simple network models to describe
the rubber behaviour. This will be shown in a forthcoming publication. Then it is expected
that the nonuniversal constantac will be found to depend in detail on specific network
properties, such as the typical mesh size, and relaxation times.

Nevertheless the present model shows the principles and the universal character of the
Payne effect in filled rubbers. The characteristic form of the amplitude dependence of the
dynamic elastic moduli was successfully derived from simple assumptions on the structure
of the filler network.

The advantage of this simple model is that it already allows the characterization of
realistic experiments, in the sense that the exponent used in the Kraus model does not
depend on the nature of the filler particles. Hence we expect the same behaviour for all
types of filler particle, independent of their special surface interactions, as long as they form
clusters.

G Huber and T A Vilgis gratefully acknowledge financial support by the Deutsche
Kautschuk-Gesellschaft (DKG).

References

[1] Treloar L R G 1975The Physics of Rubber Elasticity(Oxford: Clarendon)
[2] Smallwood H M 1944J. Appl. Phys.15 785
[3] Vilgi s T A and Heinrich G 1995Kautsch. Gummi Kunstst.48 323
[4] Donnet J B, Bansal R C and Wang M J (ed) 1993Carbon Black. Science and Technology(New York: Dekker)
[5] Donnet J B and Lansinger C M 1992Kautsch. Gummi Kunstst.45 459
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